Publications

Main publications of the laboratory.

1. S.V. Kryuchkov, E.I. Kukhar’. Influence of the constant electric field on the mutual rectification of the electromagnetic waves in graphene superlattice
Physica E: Low-dimensional Systems and Nanostructures –2012 – V. 46 – P. 25-29.
http://www.sciencedirect.com/science/article/pii/S1386947712003207

2. D.V. Zav’yalov, S.V. Kryuchkov, E.I. Kukhar’. TransverseMagnetoconductivity in a Semiconductor Superlattice under the Stark Quantization Conditions
Technical Physics Letters – V. 31 – № 9 – 2005 – P. 722.
http://link.springer.com/article/10.1134/1.2061727

3. D.V. Zav’yalov, S.V. Kryuchkov, E.I. Kukhar’. Mutual Rectification of Cnoidal and Sinusoidal Electromagnetic Waves in a Superlattice
Optics and Spectroscopy – V. 100 – № 6 – 2006 – P. 916-919.
http://link.springer.com/article/10.1134/S0030400X06060178

4. D.V. Zav’yalov, S.V. Kryuchkov, E.I. Kukhar’. Electron Photon Drag Effect in a SemiconductorSuperlatticeSubjected to a High Electric Field
Semiconductors – V. 41 – № 6 – 2007 – P. 704-707.
http://link.springer.com/article/10.1134/S1063782607060176

5. D.V. Zav’yalov, S.V. Kryuchkov, E.I. Kukhar’. Conductivity of a SemiconductorSuperlattice in a Transverse Magnetic Field
Physics of the Solid State – V. 49 – № 8 – 2007 – P. 1554-1557.
http://link.springer.com/article/10.1134/S1063783407080252

6. S.V. Kryuchkov, E.I. Kukhar’, E.S. Sivashova. Radioelectric Effect in a Superlatticeunder the Action of an Elliptically Polarized Electromagnetic Wave
Physics of the Solid State – V. 50 – № 6 – 2008 – P. 1150-1156.
http://link.springer.com/article/10.1134/S1063783408060255

7. S.V. Kryuchkov, E.I. Kukhar’, V.A. Yakovenko. Effect of the Mutual Rectification of Two Electromagnetic Waves with Perpendicular Polarization Planes in a Superlattice Based on Graphene
Bulletin of the Russian Academy of Sciences: Physics – V. 74 – № 12 – 2010 – P. 1679-1681.
http://link.springer.com/article/10.3103/S1062873810120129

8. S.V. Kryuchkov, E.I. Kukhar’, M.N. Zolotykh. Effect of the Charge Dragging in a Graphene BasedSuperlattice under a Constant Electric Field
Bulletin of the Russian Academy of Sciences: Physics – 2011 – V. 75– № 12 – P. 1582-1584.
http://link.springer.com/article/10.3103/S1062873811120203

9. S.V. Kryuchkov, E.I. Kukhar’. Magnetoconductivity of Band-Gap Graphene
Physics of the Solid State – 2012 – V. 54 – № 1 – P. 202-209.
http://link.springer.com/article/10.1134/S1063783412010192

10. S.V. Kryuchkov, E.I. Kukhar’. Effect of a Bichromatic Electric Field on the Current–Voltage Characteristic of a Graphene Based Superlattice
Semiconductors – 2012 – V. 46 – № 5 – P. 666-672.
http://link.springer.com/article/10.1134/S1063782612050144

11. S.V. Kryuchkov, E.I. Kukhar’. Mutual Rectification of Cnoidal and Sinusoidal Electromagnetic Waves with Orthogonal Polarization Planes in a Graphene Based Superlattice
Optics and Spectroscopy – 2012 – V. 112 – № 6 – P. 914-919.
http://link.springer.com/article/10.1134/S0030400X12060112

12. D.V. Zav’yalov, S.V. Kryuchkov, E.I. Kukhar’. Effect of Transverse Entrainment of Charge Carriers by the Field of Two Electromagnetic Waves in a Semiconductor
Physics of the Solid State – 2012 – V. 54 – № 9 – P. 1853-1856.
http://link.springer.com/article/10.1134/S1063783412090338

13. S.V. Kryuchkov, E.I. Kukhar’. Influence of the Magnetic Field on the Graphene Conductivity
Journal of Modern Physics – 2012 – V. 3 – № 9 – P. 994-1001.
http://www.scirp.org/journal/PaperInformation.aspx?paperID=22610

14. S.V. Kryuchkov, K.A. Popov. Ionization of impurity centers in a semiconductor quantum superlattice by nonlinear electromagnetic waves
Semiconductors, 1998, Volume 32, Issue 3, pp 302-305.
http://link.springer.com/article/10.1134/1.1187382

15. S.V. Kryuchkov, É.G. Fedorov. On the possibility of trapping of a solitary electromagnetic wave by a superlattice imperfection
Optics and Spectroscopy, 2003, Volume 94, Issue 2, pp 225-229.
http://link.springer.com/article/10.1134/1.1555182

16. S.V. Kryuchkov, É.G. Fedorov. Soliton shape stabilization in a superlattice with next-to-nearest neighbor spectrum in a field of a nonlinear wave
Semiconductors, 2002, Volume 36, Issue 3, pp 307-310.
http://link.springer.com/article/10.1134/1.1461408

17. S.V. Kryuchkov, E.V. Kaplya. A model of a soliton-memory element based on a semiconductor superlattice
Journal of Communications Technology and Electronics, 2006, Volume 51, Issue 3, pp 359-364.
http://link.springer.com/article/10.1134/S1064226906030168

18. D.V. Zavialov, V.I. Konchenkov, S.V. Kruchkov. Transverse current rectification in a graphene-based superlattice
Semiconductors, 2012, Volume 46, Issue 1, pp 109-116.
http://link.springer.com/article/10.1134/S1063782612010216

19. D.V. Zav’yalov, S.V. Kryuchkov, N.E. Meshcheryakova. Intraminiband absorption of a nonlinear electromagnetic wave in a semiconductor superlattice
Optics and Spectroscopy, 2005, Volume 98, Issue 1, pp 20-24.
http://link.springer.com/article/10.1134/1.1858034

20. D.V. Zav’yalov, S.V. Kryuchkov, N.E. Meshcheryakova. The influence of a nonlinear electromagnetic wave on electric current density in a surface superlattice in a strong electric field
Semiconductors, 2005, Volume 39, Issue 2, pp 198-201.
http://link.springer.com/article/10.1134/1.1864198

21. D.V. Zav’yalov, S.V. Kryuchkov. Superlattice conductivity under the action of a nonlinear electromagnetic wave
Semiconductors, 2001, Volume 35, Issue 5, pp 554-556.
http://link.springer.com/article/10.1134/1.1371621

22. D.V. Zav’yalov, S.V. Kryuchkov. Absorption of a strong electromagnetic wave by electrons in a superlattice in a quantizing electric field
Semiconductors, 1999, Volume 33, Issue 11, pp 1225-1228.
http://link.springer.com/article/10.1134/1.1187854

23. D.V. Zav’yalov, V.I. Konchenkov, S.V. Kryuchkov. Influence of a magnetic field on the mutual rectification of alternating currents induced by electromagnetic waves in graphene
Physics of the Solid State, 2010, Volume 52, Issue 4, pp 800-804.
http://link.springer.com/article/10.1134/S1063783410040219

24. S.V. Kryuchkov, É.G. Fedorov. Effect of the field of a nonlinear electromagnetic wave on the shape of a soliton in a semiconductor superlattice
Optics and Spectroscopy, 2002, Volume 92, Issue 2, pp 236-238.
http://link.springer.com/article/10.1134/1.1454035

25. D.V. Zav’yalov, S.V. Kryuchkov. Effect of impurities on the steady component of the current in a quantum wire under the joint action of ac and dc fields
Semiconductors, 2008, Volume 42, Issue 10, pp 1204-1207.
http://link.springer.com/article/10.1134/S1063782608100114

26. S.V. Kryuchkov. Electron entrainment by superlattice breezers with ionization of impurity centers
Radiophysics and Quantum Electronics, 1991, Volume 34, Issue 9, pp 835-837.
http://link.springer.com/article/10.1007/BF01036863

27. D.V. Zav’yalov, S.V. Kryuchkov, N.E. Meshcheryakova. Effect of high magnetic fields on the conductivity of a quantum cylinder under Stark ladder conditions
Physics of the Solid State, 2005, Volume 47, Issue 6, pp 1169-1171.
http://link.springer.com/article/10.1134/1.1946875

28. S.V. Kryuchkov, A.I. Shapovalov. Possibility of the propagation of an electromagnetic soliton in a two-dimensional superlattice
Physics of the Solid State, 1997, Volume 39, Issue 8, pp 1305-1307.
http://link.springer.com/article/10.1134/1.1130066

29. S.V. Kryuchkov, E.V. Kaplya. Soliton delay line based on a semiconductor superlattice
Technical Physics, 2003, Volume 48, Issue 5, pp 576-579.
http://link.springer.com/article/10.1134/1.1576470

30. S.Yu. Glazov, S.V. Kryuchkov. Plasma oscillations in two-dimensional semiconductor superstructures
Semiconductors, 2000, Volume 34, Issue 7, pp 807-809.
http://link.springer.com/article/10.1134/1.1188078

31. D.V. Zav’yalov, S.V. Kryuchkov, E.V. Marchuk. Current-voltage characteristic of a narrow-band semiconductor taking into account ionization of impurities
Technical Physics, 2008, Volume 53, Issue 9, pp 1243-1246.
http://link.springer.com/article/10.1134/S1063784208090193

32. D.V. Zav’yalov, S.V. Kryuchkov. Magnetothermo-emf of a one-dimensional superlattice
Technical Physics Letters, 2004, Volume 30, Issue 5, pp 435-437.
http://link.springer.com/article/10.1134/1.1760878

33. D.V. Zav’yalov, S.V. Kryuchkov, É.V. Marchuk. On the possibility of transverse current rectification in graphene
Technical Physics Letters, 2008, Volume 34, Issue 11, pp 915-917.
http://link.springer.com/article/10.1134/S1063785008110047

34. M.B. Belonenko, S.Yu. Glazov, N.E. Meshcheryakova. Dynamics of electromagnetic pulses with wide spectra in semiconductor superlattices
Journal of Russian Laser Research, 2008, V. 29, P. 114-122.
http://link.springer.com/article/10.1007/s10946-008-9004-7

35. M.B. Belonenko, S.Yu. Glazov, N.E. Meshcheryakova. Interaction of wide-spectrum electromagnetic pulses with materials containing a superstructure
Bulletin of the Russian Academy of Sciences: Physics, 2008, V. 72, № 12, P. 1610-1613.
http://link.springer.com/article/10.3103/S1062873808120058

36. O.P. Volosnikova, D.V. Zav’yalov, S.V. Kryuchkov. Effect of a strong electric field on the high-frequency properties of a helical quantum wire
Technical Physics Letters, 2006, Volume 32, Issue 9, pp 785-787.
http://link.springer.com/article/10.1134/S106378500609015X

37. S.Yu. Glazov, E.S. Kubrakova, Plasma oscillations in two-dimensional semiconductor superstructures in the presence of high-frequency electric field
Bulletin of the Russian Academy of Sciences: Physics, 2009, Volume 73, Issue 12, pp 1605-1607.
http://link.springer.com/article/10.3103/S1062873809120132

38. М.В. Вязовский, С.В. Крючков. Радиоэлектрический эффект в сверхрешетках в импульсном режиме облучения
ФТП, 1992, т. 26, в. 1, 184-187.
http://journals.ioffe.ru/ftp/1992/01/p184-187.pdf

39. С.В. Крючков, Е.И. Кухарь. “Нелинейные кинетические эффекты в сверхструктурах: влияние интенсивных полей на оптические и электрические свойства низкоразмерных структур”, LAMBERT Academic Publishing GmbH & Co. KG, 172 с.
https://www.lap-publishing.com/catalog/details/store/gb/book/978-3-8454-7592-9/Нелинейные-кинетические-эффекты-в-сверхструктурах

40. S.V. Kryuchkov, K.A. Popov. The Franz-Keldysh effect in superlattices in the field of a nonlinear electromagnetic wave
Radiophysics and Quantum Electronics, 1998, Volume 41, Issue 6, pp 511-517.
http://link.springer.com/article/10.1007/BF02676684

41. D.V. Zav’yalov, V.I. Konchenkov, S.V. Kryuchkov. The possibility of cyclotron echo generation in graphene on a SiC substrate
Physics of Wave Phenomena, 2011, Volume 19, Issue 4, pp 287-289.
http://link.springer.com/article/10.3103/S1541308X1104008X

42. S.Yu. Glazov, E.S. Kubrakova. Influence of constant quantizing electric field on plasma waves in a two-dimensional superlattice
Bulletin of the Russian Academy of Sciences: Physics, 2011, Volume 75, Issue 12, pp 1616-1618.
http://link.springer.com/article/10.3103/S1062873811120148

43. S.Yu. Glazov, N.E. Mescherkova. Generation of high harmonics by an alternating electric field in superlattices based on graphene
Bulletin of theRussianAcademyof Sciences: Physics, 2011, Volume 75, Issue 12, pp 1613-1615.
http://link.springer.com/article/10.3103/S1062873811120136

44. D.V. Zav’yalov, V.I. Konchenkov, S.V. Kryuchkov. Mutual rectification of alternating currents induced by electromagnetic waves in graphene
Physics of the Solid State, 2009, Volume 51, Issue 10, pp 2157-2160.
http://link.springer.com/article/10.1134/S1063783409100278

45. S.Yu. Glazov, S.V. Kryuchkov. Plasma oscillations in two-dimensional semiconductor superstructures in the presence of a high electric field
Semiconductors, 2001, Volume 35, Issue 4, pp 444-446.
http://link.springer.com/article/10.1134/1.1365191

46. D.V. Zavyalov, S.V. Kryuchkov, T.A. Tyul’kina. Effect of rectification of current induced by an electromagnetic wave in graphene: A numerical simulation
Semiconductors, 2010, Volume 44, Issue 7, pp 879-883.
http://link.springer.com/article/10.1134/S1063782610070092

47. D.V. Zav’yalov, S.V. Kryuchkov, N.E. Meshcheryakova. The effect of a quantizing electric field on the transverse mobility of electrons in a superlattice
Semiconductors, 2006, Volume 40, Issue 12, pp 1429-1431.
http://link.springer.com/article/10.1134/S1063782606120104

48. D.V. Zav’yalov, S.V. Kryuchkov, E.S. Sivashova. Electron-photon drag in a superlattice under the action of a strong electric field
Technical Physics Letters, 2006, Volume 32, Issue 2, pp 143-145.
http://link.springer.com/article/10.1134/S1063785006020179

49. M.B. Belonenko, S.Yu. Glazov, N.G. Lebedev, N.E. Meshcheryakova. Two-dimensional nonlinear electromagnetic waves in a carbon nanotube array
Physics of the Solid State, 2009, V. 51, № 8, P. 1758-1764.
http://link.springer.com/article/10.1134/S1063783409080393

50. M.B. Belonenko, S.Yu. Glazov, N.E. Meshcheryakova. Nonlinear conductivity of single-walled zigzag carbon nanotubes
Bulletin of the Russian Academy of Sciences: Physics, 2009, V. 73, № 12, P. 1601-1604.
http://link.springer.com/article/10.3103/S1062873809120120

51. D.V. Zav’yalov, V.I. Konchenkov, S.V. Kryuchkov. Mutual rectification of alternating currents in graphene
Physics of Wave Phenomena. 2010, Volume 18, Issue 4, pp 284-288.
http://link.springer.com/article/10.3103/S1541308X10040096

52. D.V. Zavialov, E.V. Kaplya, S.V. Kryuchkov. The Dynamics of Electromagnetic Solitons near a Semiconductor Superlattice Discontinuity
Laser Physics, 2004, V. 14, № 10, P. 1310-1313.
http://www.maik.ru/full/lasphys/04/10/lasphys10_04p1310full.pdf

53. D.V. Zav’yalov, S.V. Kryuchkov. Scattering of Nonlinear Electromagnetic Waves by Electrons in a One-Dimensional Superlattice
Laser Physics, 2000, Vol. 10, No. 5, pp. 1156–1158.
http://www.maik.ru/full/lasphys/00/5/lasphys5_00p1156full.pdf

54. S.V. Kryuchkov, E.G. Fedorov. Propagation of a Dissipative Soliton in a Heterogeneous Semiconductor Superlattice
Laser Physics, 2003, Vol. 13, No. 9, pp. 1158–1160.
http://www.maik.ru/full/lasphys/03/9/lasphys9_03p1158full.pdf

55. S.V. Kryuchkov, E.G. Fedorov. Interaction of a Soliton with an Inhomogeneity in a Semiconductor Superlattice under the Influence of a High-Frequency Electric Field
Laser Physics, 2002, Vol. 12, No. 7, pp. 1037–1040.
http://www.maik.ru/full/lasphys/02/7/lasphys7_02p1037full.pdf

56. D.V. Zav’yalov, S.V. Kryuchkov. Breatherelectric Effect in Superlattices
Laser Physics, 2003, Vol. 13, No. 10, pp. 1256–1258.
http://www.maik.ru/full/lasphys/03/10/lasphys10_03p1256full.pdf

57. D.V. Zav’yalov, S.V. Kryuchkov, N.E. Meshcheryakova. Absorption of Cnoidal Electromagnetic Waves by Superlattice Electrons in the Process of Impurity Ionization
Optics and Spectroscopy, 2004, V. 96, № 1, p. 63.
http://www.maik.ru/cgi-perl/search.pl?type=abstract&name=optics&number=1&year=4&page=63

58. S.V. Kryuchkov, K.A. Popov. Entrainment of current carriers in a superlattice upon ionization of impurity centers by nonlinear electromagnetic waves
Optics and Spectroscopy, 1998, V. 85, № 3, p. 396.
http://www.maik.ru/cgi-perl/search.pl?type=abstract&name=optics&number=9&year=98&page=396

59. S.V. Kryuchkov, A.I. Shapovalov. Effect of a high-frequency electric field on the shape of a solitary wave in a superlattice with a spectrum beyond the framework of the nearest neighbors approximation
Optics and Spectroscopy, 1998, V. 84, № 2, p. 244.
http://www.maik.ru/cgi-perl/search.pl?&nbsp type=abstract&name=optics&number=2&year=98&page=244

60. S.V. Kryuchkov, A.I. Shapovalov. On the theory of the optoelectric effect in the regime of nonlinear waves in superlattices
Optics and Spectroscopy, 1996, V. 81, № 2, p. 305.
http://www.maik.ru/cgi-perl/search.pl?type=abstract;name=optics;number=8;year=96;page=305

61. M.V. Vyazovskii, G.A. Syrodoev. Drag current for ionization of impurities by an electromagnetic wave in a semiconductor superlattice
Semiconductors, 1999, Volume 33, Issue 12, pp 1297-1300
http://link.springer.com/article/10.1134/1.1187911

62. М.В. Вязовский, Г.А. Сыродоев. Увлечение электронов солитонами в сверхрешетках во внешнем магнитном поле
ФТП, 1996, т. 30, в. 7, 1324-1327.
http://journals.ioffe.ru/ftp/1996/07/p1324-1327.pdf

63. С.В. Крючков, Г.А. Сыродоев. Влияние процессов ионизации примесей на проводимость сверхрешетки в немонохроматическом поле
ФТП, 1992, т. 26, в. 4, 774-778.
http://journals.ioffe.ru/ftp/1992/04/p774-778.pdf

64. М.В. Вязовский, С.В. Крючков, Г.А. Сыродоев. Увлечение электронов светом, распространяющимся вдоль оси сверхрешетки
ФТТ, 1993, т. 35, в. 11, 3155-3158.
http://journals.ioffe.ru/ftt/1993/11/p3155-3158.pdf

65. M.V. Vyazovsky, G.A. Syrodoev. Generation of Acoustic Phonons in Semiconductor Superlattice in the Case of an Intraband Absorption of Electromagnetic Wave
Radiophysics and Quantum Electronics, 2005, Volume 48, Issue 5, pp 390-393.
http://link.springer.com/article/10.1007/s11141-005-0081-y

66. M.V. Vyazovsky, G.A. Syrodoev. Drag Current due to Multiphoton Intraband Absorption of an Electromagnetic Wave in a Superlattice
Radiophysics and Quantum Electronics, 2001, Volume 44, Issue 8, pp 668-671.
http://link.springer.com/article/10.1023/A%3A1012538008778

67. M.V. Vyazovskii, G.A. Syrodoev. Electron entrainment by solitons in superlattices in an exteral magnetic field allowing for collisions
Radiophysics and Quantum Electronics, 1997, Volume 40, Issue 5, pp 438-441.
http://link.springer.com/article/10.1007/BF02676211

68. G.M. Shmelev, É.M. Épshtein, G.A. Syrodoev. A quasi-one-dimensional ballistic ring in a constant electric field
Technical Physics, 2000, Volume 45, Issue 10, pp 1354-1356.
http://link.springer.com/article/10.1134/1.1318978

69. Ф.Г. Басс, С.В. Крючков, А.И. Шаповалов. Влияние однородного высокочастотного поля на форму электромагнитной волны в квантовой сверхрешетке
ФТП, 1995, т. 29, в. 1, 19-23.
http://journals.ioffe.ru/ftp/1995/01/p19-23.pdf

70. M.B. Belonenko, S.Yu. Glazov, N.E. Meshcheryakova. Influence of constant electric field on generation of higher harmonics in semiconductor carbon nanotubes
Optics and Spectroscopy, 2010, V. 108, № 5, P. 774-779.
http://link.springer.com/article/10.1134/S0030400X10050164

71. M.B. Belonenko, S.Yu. Glazov, N.E. Mescheryakova. Effect of an AC electric field on the conductance of single-wall semiconductor-type carbon nanotubes
Semiconductors, 2010, V. 44, № 9, P. 1211-1216.
http://link.springer.com/article/10.1134/S1063782610090186

72. S.Yu. Glazov, E.S. Kubrakova, N.E. Meshcheryakova. Plasma oscillations in two-dimensional electron systems with a superstructure under Stark quantization conditions
Physics of Wave Phenomena, 2010, V. 18, № 4, P. 313-317.
http://link.springer.com/article/10.3103/S1541308X1004014X

73. S.Yu. Glazov, N.E. Mescheryakova, D.V. Martynov. “Generating High Harmonics in a Superlattice Based on Graphene in the Presence of Static and Alternating Electric Fields”.
Bulletin of the Russian Academy of Sciences. Physics. 2012, V. 76, № 12, p. 1319-1322.
http://link.springer.com/article/10.3103/S1062873812120143

74. S.Yu. Glazov, A.A. Kovalev, N.E. Mescheryakova. “Plasma Waves in a Superlattice Based on Graphene”.
Bulletin of the Russian Academy of Sciences. Physics. 2012, V. 76, № 12, p. 1323-1325.
http://link.springer.com/article/10.3103/S1062873812120155

75. Dima Bolmatov, D.V. Zavialov. Conductance enhancement due to atomic potential fluctuations in graphene
Journal of Applied Physics. 2012, V. 112, P. 103703.
http://jap.aip.org/resource/1/japiau/v112/i10/p103703_s1?bypassSSO=1

76. S.V. Kryuchkov, E.I. Kukhar’. The solitary electromagnetic waves in the graphene superlattice
Physica B: Condensed Matter, 2013, Volume 408 , pp. 188-192.
http://www.sciencedirect.com/science/article/pii/S0921452612009179

77. V.I. Konchenkov, S.V. Kryuchkov, T.A. Nosaeva, D. V. Zav’yalov. Mutual Rectification of Alternating Currents in Graphene in the Field of Two Electromagnetic Waves
Physics of Wave Phenomena. 2013, V. 21, № 1, p. 56-61.
http://link.springer.com/article/10.3103/S1541308X13010111

78. S.V. Kryuchkov, E.I. Kukhar’, Charge dragged by the solitary electromagnetic wave in the graphene superlattice
Physica E: Low-dimensional system & nanostructures, 2013, Volume 48 , pp. 96-100.
http://www.sciencedirect.com/science/article/pii/S1386947712004729

79. S.V. Kryuchkov, E.I. Kukhar’, D.V. Zav’yalov. Charge dynamics in graphene and graphene superlattices under a high-frequency electric field: a semiclassical approach
Laser Physics, 2013, Volume 23, Number 6, P. 065902.
http://iopscience.iop.org/1555-6611/23/6/065902

80. S.V. Kryuchkov, E.I. Kukhar’, D.V. Zav’yalov. Conductivity of the graphene in the transversal magnetic field: Relaxation time approximation with Monte-Carlo method
Physica E: Low-dimensional Systems and Nanostructures, Volume 53, 2013, Pages 124–129.
http://www.sciencedirect.com/science/article/pii/S1386947713001677

81. S.V. Kryuchkov, E.I. Kukhar’, O.S. Nikitina. Influence of the electromagnetic wave on the transversal conductivity of the graphene superlattice
Superlattices and Microstructures, Volume 60, 2013, Pages 524–532.
http://www.sciencedirect.com/science/article/pii/S0749603613001754

82. S.Yu. Glazov, E.S. Kubrakova, N.E. Mescheryakova. Coupled plasma waves in a system of two two-dimensional superlattices in the presence of a quantizing electric field
Semiconductors, Volume 47, October 2013, Issue 10, Pages 1312-1315.
http://link.springer.com/article/10.1134/S1063782613100114

83. S.V. Kryuchkov, E.I. Kukhar’, O.S. Nikitina. Electron States and Quasienergy Spectrum of the Graphene Exposed on the Electromagnetic Wave
Journal of Nano- and Electronic Physics, Volume 5, 2013, P. 03005.
http://www.scopus.com/inward/record.url?eid=2-s2.0-84885135548&partnerID=MN8TOARS

84. S.V. Kryuchkov, E.I. Kukhar’, D.V. Zav’yalov. Absorption of Electromagnetic Waves by Graphene
Physics of Wave Phenomena. 2013, V. 21, № 3, P. 1-7.
http://link.springer.com/article/10.3103/S1541308X13030060

85. S.V. Kryuchkov, E.I. Kukhar’, D V Zav’yalov. Chaotic behavior of the electrons in graphene superlattice
Superlattices and Microstructures. 2013, V. 64, P. 427-432.
http://www.sciencedirect.com/science/article/pii/S0749603613003224

86. S.V. Kryuchkov, E.I. Kukhar’, O.S. Nikitina. Graphene quasi-energy spectrum under high-frequency electromagnetic radiation
Physics of Wave Phenomena. 2014, V. 22, P. 25-30.
http://link.springer.com/article/10.3103/S1541308X14010051

87. S.V. Kryuchkov, E.I. Kukhar’, D.V. Zav’yalov. Dynamic chaotization of the electronic subsystem in graphene superlattice
Physica E: Low-dimensional Systems and Nanostructures. 2014, V. 56, P. 246–250.
http://www.sciencedirect.com/science/article/pii/S1386947713003184

88. S.V. Kryuchkov, E.I. Kukhar’. Solitary electromagnetic waves in a graphene superlattice under influence of high-frequency electric field
Superlattices and Microstructures. 2014, V. 70, P. 70–81.
http://www.sciencedirect.com/science/article/pii/S0749603614000767

89. S.V. Kryuchkov, E.I. Kukhar’. Effect of High-Frequency Electric Field on the Electron Magnetotransport in Graphene
Physica B: Physics of Condensed Matter. 2014, V. 445, P. 93-97.
http://www.sciencedirect.com/science/article/pii/S0921452614002841

90. S.V. Kryuchkov, E.I. Kukhar’, V.I. Konchenkov. Effect of Laser Radiation on the Energy Spectrum of 2D Electrons with Rashba Interaction
Advanced Studies in Theoretical Physics. 2014, V. 8, P. 731-736.
http://dx.doi.org/10.12988/astp.2014.4680

91. Dima Bolmatov, D. Zav’yalov, M. Gao, Mikhail Zhernenkov. Structural Evolution of Supercritical CO2 across the Frenkel Line
The Journal of Physical Chemistry Letters. 2014, V. 5, P. 2785-2790.
http://pubs.acs.org/doi/abs/10.1021/jz5012127

92. V.I. Konchenkov, S.V. Kryuchkov, D.V. Zav’yalov. Influence of constant electric field on circular photogalvanic effect in material with Rashba Hamiltonian.
Journal of Computational Electronics. 2014, V. 13, № 4, p. 996-1009.
http://link.springer.com/article/10.1007/s10825-014-0622-8

93. S.V. Kryuchkov, E.I. Kukhar’, O.S. Nikitina. Effect of High-frequency Laser Radiation on the Graphene Current-voltage Characteristic.
Journal of Nano- and Electronic Physics. 2014, V. 6, № 4, P. 04003.
http://jnep.sumdu.edu.ua/ru/component/content/full_article/1328

94. S.V. Kryuchkov, E.I. Kukhar’. Propagation of Electromagnetic Solitons in Quantum Superlattices Subjected to the High-Frequency Radiation
Journal of Nanoelectronics and Optoelectronics. 2014, V. 9, № 4, P. 564-569.
http://www.ingentaconnect.com/content/asp/jno/2014/00000009/00000004/art00022?token=00481d27e5fafbab9121c437a63736a6f3547462176666c7770742b6f642f4642c22eca6

95. S.Yu. Glazov, I.S. Gromyshov, N.E. Meshcheryakova. Plasma Excitation Density in a Two Dimensional Semiconductor Superlattice.
Bulletin of the Russian Academy of Sciences. Physics. 2014, V. 78, № 12, P. 1239-1241.
http://link.springer.com/article/10.3103/S1062873814120089

96. S.Y. Glazov, A.A. Kovalev, N.E. Meshcheryakova. Plasma waves in superlattices based on graphene in the presence of a strong static electric field
Semiconductors. 2015, V. 49, № 4, P. 504-507.
http://link.springer.com/article/10.1134/S1063782615040119

97. P.V. Badicova, S.Y. Glazov. Conductivity and higher current density harmonics of a gap graphene modification in the presence of constant and alternating electric fields
Bulletin of the Russian Academy of Sciences: Physics. 2015, V. 79, № 12, P. 1443–1447.
http://link.springer.com/article/10.3103/S1062873815120060

98. S.V. Kryuchkov, E.I. Kukhar’. About the linewidth of cyclotron resonance in band-gap graphene.
Physica E: Low-dimensional Systems and Nanostructures. 2015, V. 65, P. 13-16.
http://www.sciencedirect.com/science/article/pii/S1386947714003014

99. S.V. Kryuchkov, E.I. Kukhar’. Stabilization of the Shape of a Solitary Electromagnetic Wave in a Graphene Superlattice by a High-Frequency Laser Field.
Optics and Spectroscopy. 2015, V. 118, № 1, P. 157-162.
http://link.springer.com/article/10.1134/S0030400X15010142

100. S.V. Kryuchkov, E.I. Kukhar’. Dynamic chaotisation of the electronic subsystem in a graphene superlattice subjected to the electromagnetic radiation
Laser Physics. 2015, V. 25, № 9, P. 095901.
http://iopscience.iop.org/article/10.1088/1054-660X/25/9/095901

101. S.V. Kryuchkov, E.I. Kukhar’. Possibility of the effect of absolute negative conductivity in quantum superlattice exposed to the high-frequency electromagnetic radiation
Superlattices and Microstructures. 2015, V. 83, P. 322-328.
http://www.sciencedirect.com/science/article/pii/S0749603615001810

102. S.V. Kryuchkov, E.I. Kukhar’, D.V. Zav’yalov. Linewidth of Cyclotron Absorption in Band-Gap Graphene: Relaxation Time Approximation vs. Monte Carlo Method
Journal of Nano- and Electronic Physics. 2015, V. 7, № 1, P. 01007.
http://jnep.sumdu.edu.ua/ru/component/content/full_article/1401

103. S.V. Kryuchkov, E.I. Kukhar’, D.V. Zav’yalov. Photostimulated Negative Conductivity of Semiconductor Superlattice
Journal of Nano- and Electronic Physics. 2015, V. 7, № 4, P. 04072.
http://jnep.sumdu.edu.ua/ru/component/content/full_article/1670

104. S.V. Kryuchkov, E.I. Kukhar’. Possibility of Propagation of Dissipative Solitons in AC-Driven Superlattice
Physics of Wave Phenomena. 2015, V. 23, № 1, P. 21-27.
http://link.springer.com/article/10.3103/S1541308X15010033

105. S.V. Kryuchkov, E.I. Kukhar’. Weakly Bound States of Elementary Excitations in Graphene Superlattice in Quantizing Magnetic Field
Advances in Condensed Matter Physics. 2015, Article ID 979528.
http://www.hindawi.com/journals/acmp/2015/979528/

106. S.V. Kryuchkov, E.I. Kukhar’, D.V. Zav’yalov. Magnetoabsorption of Elliptically Polarized Electromagnetic Radiation by Graphene: The Relaxation Time Approximation and Monte Carlo Method
Physics of the Solid State. 2015, V. 57, № 6, P. 1244-1248.
http://link.springer.com/article/10.1134/S1063783415060219

107. S.V. Kryuchkov, E.I. Kukhar’. Alternating current-driven graphene superlattices: Kinks, dissipative solitons, dynamic chaotization
Chaos. 2015, V. 25, № 7, P. 073116.
http://scitation.aip.org/content/aip/journal/chaos/25/7/10.1063/1.4926944

108. D. Bolmatov, M. Zhernenkov, D. Zav’yalov, S. Stoupin, Y.Q. Cai, A. Cunsolo. Revealing the Mechanism of the Viscous-to-Elastic Crossover in Liquids
Journal of Physical Chemistry Letters. 2015, V. 6 (15), P. 3048-3053.
http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.5b01338

109. D. Bolmatov, D. Zav’yalov, M. Zhernenkov, E.T. Musaev, Y.Q. Cai. Unified phonon-based approach to the thermodynamics of solid, liquid and gas states
Annals of Physics. 2015, V. 363, P. 221-242.
http://www.sciencedirect.com/science/article/pii/S000349161500353X

110. D. Bolmatov, M. Zhernenkov, D. Zav’yalov, S.N. Tkachev, A. Cunsolo, Y.Q. Cai. The Frenkel Line: a direct experimental evidence for the new thermodynamic boundary
Scientific Reports. 2015, V. 5, P. 15850.
http://www.nature.com/articles/srep15850

111. V.I. Konchenkov, S.V. Kryuchkov, D.V. Zav’yalov. Influence of a transverse electric field on the alternating currents rectification effect in superstructures with non-additive energy spectrum
Journal of Nano- and Electronic Physics. 2015, V. 7, № 4, P. 04022.
http://jnep.sumdu.edu.ua/ru/component/content/full_article/1627

112. D. Bolmatov, M. Zhernenkov, D. Zav’yalov, Y.Q. Cai, A. Cunsolo.
Terasonic Excitations in 2D Gold Nanoparticle Arrays in a Water Matrix as Revealed by Atomistic Simulations
Journal of Physical Chemistry C. 2016, V. 120 (35), P. 19896–19903.
http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b08250

113. V.L. Abdrakhmanov, S.V. Kryuchkov, D.V. Zav’yalov.
Effect of a constant electric field on mutual rectification in a graphene superlattice
Physics of Wave Phenomena. 2016, V. 24, № 4, P. 295–300.
http://link.springer.com/article/10.3103/S1541308X16040099

114. D.V. Zav’yalov, V.I. Konchenkov, S.V. Kryuchkov.
Generation of transverse direct current in a superlattice under a bichromatic high-frequency electric and constant magnetic fields
Semiconductors. 2016, V. 50, № 6, P. 785–790.
http://link.springer.com/article/10.1134/S1063782616060245

115. D. Bolmatov, M. Zhernenkov, D. Zav’yalov, S. Stoupin, A. Cunsolo, Y.Q. Cai.
Thermally triggered phononic gaps in liquids at THz scale
Journal of Physical Chemistry C. 2016, V. 50, № 6, P. 1–7.
http://www.nature.com/articles/srep19469

116. D.V. Zav’yalov, S.V. Kryuchkov, E.S. Ionkina.
Peculiarities of stark-phonon resonance in two-dimensional superlattices with non-additive energy spectrum
Journal of Nano- and Electronic Physics. 2016, V. 8, № 1, P. 01019.
http://jnep.sumdu.edu.ua/component/search/index.php?option=com_content&task=full_article&id=1732

117. S.V. Kryuchkov, E.I. Kukhar’, P.V. Nazarov. Influence of High-Frequency Electromagnetic Radiation on the de Haas–Van Alphen Effect in Graphene
Bulletin of the Russian Academy of Sciences. Physics. 2016, V. 80, № 2, P. 190-193.
http://link.springer.com/article/10.3103/S1062873816020167

118. S.V. Kryuchkov, E.I. Kukhar’, E.S. Ionkina. Superlattice Conductivity Sign Change Induced by Intense Electromagnetic Radiation
Physics of the Solid State. 2016, V. 58, № 7, P. 1295-1299.
http://link.springer.com/article/10.1134/S1063783416070234

119. S.V. Kryuchkov, E.I. Kukhar’. Effect of transverse electric field on the longitudinal current–voltage characteristic of graphene superlattice
Semiconductors. 2016, V. 50, № 2, P. 217-221.
http://link.springer.com/article/10.1134/S1063782616020147

120. S.V. Kryuchkov, E.I. Kukhar’, E.S. Ionkina. Quasienergy spectrum of electrons in ac-driven graphene superlattice
Superlattices and Microstructures. 2016, V. 100, P. 730–738.
http://www.sciencedirect.com/science/article/pii/S0749603616304700

121. E.I. Kukhar’, S.V. Kryuchkov, E.S. Ionkina. Dynamic conductivity of ac-dc-driven graphene superlattice
Physica E: Low-dimensional Systems and Nanostructures. 2016, V. 80, P. 14-18.
http://www.sciencedirect.com/science/article/pii/S1386947716300042

122. S.V. Kryuchkov, E.I. Kukhar’, E.S. Ionkina. Quasienergy spectrum of electrons in ac-driven graphene superlattice
Proceedings of the 6th International Conference Nanomaterials: Applications and Properties, NAP 2016.
http://ieeexplore.ieee.org/document/7757273/?reload=true

123. V.I. Konchenkov, S.V. Kryuchkov, D.V. Zav’yalov. Using a numerical solution of quantum kinetic equation for analysis of mutual amplification of electromagnetic waves in lateral superlattice
Proceedings of the 6th International Conference Nanomaterials: Applications and Properties, NAP 2016.
http://ieeexplore.ieee.org/document/7757295/

124. L.I. Guzilova, A.S. Grashchenko, A.I. Pechnikov, V.N. Maslov, D.V. Zav’Yalov, V.L. Abdrachmanov, A.E.Romanov, V.I. Nikolaev. Study of β-Ga2O3 epitaxial layers and single crystals by nanoindentation technique
Materials Physics and Mechanics. 2016, V. 29, P. 166-171.
http://www.ipme.ru/e-journals/MPM/no_22916/MPM229_09_guzilova.html

125. S.V. Kryuchkov, E.I. Kukhar’. AC-field Induced Gap Opening in the Vicinity of Extra Dirac Points in Band Structure of Graphene Superlattice
Journal of Nano- and Electronic Physics. 2016, V. 8, № 4(2), P. 04057.
http://jnep.sumdu.edu.ua/ru/component/content/full_article/2086

126. S.V. Kryuchkov, C.A. Popov. Two-Dimensional Graphene Superlattice: Energy Spectrum and Current-Voltage Characteristics
Journal of Nano- and Electronic Physics. 2017, V. 9, № 2, P. 02013.
https://jnep.sumdu.edu.ua/ru/component/content/full_article/2173

127. D.V. Zav’yalov, S.V. Kryuchkov. Anisotropic Electrical Properties of a Square Superlattice
Journal of Nano- and Electronic Physics. 2017, V. 9, № 5, P. 05027.
https://jnep.sumdu.edu.ua/ru/component/content/full_article/2316

128. V. Konchenkov, D. Zav’yalov, S. Kryuchkov. Energy spectrum of the Superlattice Consisting of the Alternating Strips of One-layer and Two-layer Graphene
Proceedings of the 7th International Conference Nanomaterials: Applications and Properties, NAP, 2017.
https://ieeexplore.ieee.org/document/8190300/

129. V.L. Abdrakhmanov, D. Zav’yalov, S. Kryuchkov. Graphene Superlattice with Tunable Electronic Band Structure
Proceedings of the 7th International Conference Nanomaterials: Applications and Properties, NAP, 2017.
https://ieeexplore.ieee.org/document/8190223/

130. S.V. Kryuchkov, C.A. Popov. Transport Properties of the Two-Dimentional Graphene Superlattice
Proceedings of the 7th International Conference Nanomaterials: Applications and Properties, NAP, 2017.
https://ieeexplore.ieee.org/document/8190221/

131. E.I. Kukhar’, S.V. Kryuchkov, E.S. Ionkina. Effect of a dc electric field on the high-frequency conductivity of a graphene superlattice
Bulletin of the Russian Academy of Sciences: Physics. 2017, V. 81, P. 47-50.
https://link.springer.com/article/10.3103%2FS1062873817010154

132. P.V. Badikova, S.Yu. Glazov. Toward a Theory of Plasma Waves in Bilayer Graphene
Bulletin of the Russian Academy of Sciences: Physics. 2017, V. 81, № 1, P. 51-54.
https://link.springer.com/article/10.3103/S1062873817010051

133. S.V. Kryuchkov, E.I. Kukhar. Magnetic Minibands and Electron–Electron Bound States in ac-Driven Graphene with Space-Modulated Gap
Journal of Nanoelectronics and Optoelectronics. 2017, V. 12, № 4, P. 337-342.
http://www.ingentaconnect.com/content/asp/jno/2017/00000012/00000004/art00007

134. E.I. Kukhar, S.V. Kryuchkov, E.S. Ionkina. Generation of Direct Current in Bilayer Graphene Due to the Bichromatic Electric Field Effect
Bulletin of the Russian Academy of Sciences: Physics. 2018, V. 82, № 1, P. 90-93.
https://link.springer.com/article/10.3103/S1062873818010124

135. S.Y. Glazov, A.A. Kovalev. Plasma excitation density in a graphene-based superlattice
Bulletin of the Russian Academy of Sciences: Physics. 2018, V. 82, № 1, P. 94-97.
https://link.springer.com/article/10.3103/S1062873818010082

136. S.Y.Glazov, P.V. Badikova. Ionization of impurities by a constant electric field in graphene with a Wide Forbidden Band
Journal of Nano- and Electronic Physics. 2018, V. 10, № 2, P. 02020.
https://jnep.sumdu.edu.ua/ru/component/content/full_article/2468

137. D. Bolmatov, D. Soloviov, D. Zav’yalov, L. Sharpnack, D.M. Agra-Kooijman, S. Kumar, J. Zhang, M. Liu, J. Katsaras. Anomalous Nanoscale Optoacoustic Phonon Mixing in Nematic Mesogens
Journal of Physical Chemistry Letters. 2018, V. 9, № 10, P. 2546-2553.
https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.8b00926?journalCode=jpclcd&quickLinkVolume=9&quickLinkPage=2546&selectedTab=citation&volume=9

138. E.I. Kukhar, S.V. Kryuchkov, E.S. Ionkina. On the Possibility of the Propagation of Solitary Electromagnetic Waves in Bigraphene
Semiconductors. 2018, V. 52, № 6, P. 766-770.
https://link.springer.com/article/10.1134/S1063782618060106

139. S.V. Kryuchkov, E.I. Kukhar. Phonon-induced renormalization of the electron spectrum of biased bilayer graphene
Superlattices and Microstructures. 2018, V. 117, P. 288-292.
https://www.sciencedirect.com/science/article/pii/S0749603618302878

140. E.I. Kukhar. AC-driven bilayer graphene: quasienergy spectrum of electrons and generation of soliton-like electromagnetic pulse
The European Physical Journal B. 2018, V. 91, № 1, P. 5.
https://epjb.epj.org/articles/epjb/abs/2018/01/b170445/b170445.html