Лабораторная работа № 3

Тема: Физические величины и единицы их измерения

Цель работы: Изучить классификацию физических величин по ГОСТ 8. 417-2002 и размерность основных и производных физических величин и единицы их измерения. Освоить перевод основных и производных единиц в кратные, дольные единицы и наоборот.

Основные понятия и определения

Физическая величина — это характеристика одного из свойств физического объекта (явления или процесса), общая в качественном отношении многим физическим объектам, но в количественном отношении индивидуальная для каждого объекта.

Можно выделить три вида физических величин:

К первому виду физических величин относятся величины, на множестве размеров которых определены лишь отношения порядка и эквивалентности. Это отношение типа «мягче», «тверже», «теплее», «холоднее». К величинам такого рода относятся, например, твердость, определяемая как способность тела оказывать сопротивление проникновения в него другого тела; температура как степень нагретости тела и т.п.

Для второго вида физических величин отношение порядка и эквивалентности имеет место как между размерами, так и между разностями в парах их размеров. Так, разности интервалов времени считаются равными, если расстояние между соответствующими отметками равны.

Третий вид составляют аддитивные физические величины, на множестве размеров которых определены не только отношения порядка и эквивалентности, но операции сложения и вычитания. К таким величинам относятся длина, масса, сила тока.

Множество физических величин представляет собой некоторую систему, в которой отдельные величины связаны между собой системой уравнений.

Система физических величин — это совокупность взаимосвязанных физических величин, образованная в соответствии с принятыми принципами, когда одни величины принимаются за независимые, а другие являются функциями независимых величин.

Для каждой физической величины должна быть установлена единица измерения.

Единица физической величины — физическая величин фиксированного размера, которой условно присвоено значение, равное единице, и применяемая для количественного выражения однородных физических величин.

Кроме основных и производных физических величин различают кратные, дольные, когерентные, системные и несистемные единицы.

Основная единица системы единиц физических величин — единица основной физической величины в данной системе единиц. Основные единицы Международной системы единиц (СИ): метр (м), килограмм (кг), секунда (с), ампер (А), кельвин (К), моль (моль) и кандела (кд).

Производная единица системы единиц физических величин (англ. derived unit of measurement) — единица производной физической величины системы единиц, образованная в соответствии с уравнением, связывающим ее с основными единицами или с основными и уже определенными производными.

Системная единица физической величины — единица физической величины, входящая в принятую систему единиц.

Основные, производные, кратные и дольные единицы СИ являются системными. Например: 1 м; 1 м/с; 1 км; 1 нм.

Внесистемная единица физической величины — единица физической величины, не входящая в принятую систему единиц. Внесистемные единицы (по отношению к единицам СИ) разделяются на четыре группы:

- допускаемые наравне с единицами СИ;
- допускаемые к применению в специальных областях;
- временно допускаемые;
- устаревшие (недопускаемые).

Когерентная производная единица физической величины — производная единица физической величины, связанная с другими единицами системы единиц уравнением, в котором числовой коэффициент принят равным 1.

Когерентная система единиц физических величин — система единиц физических величин, состоящая из основных единиц и когерентных производных единиц.

Кратная единица физической величины — единица физической величины, в целое число раз большая системной или внесистемной единицы.

Дольная единица физической величины – единица физической величины, в целое число раз меньшая системной или внесистемной единицы.

В табл. 1.1 приводятся множители и приставки для образования десятичных кратных и дольных единиц и их наименования.

Tаблица 1.1 Множители и приставки для образования десятичных

кратных и дольных единиц Множитель Приставка Обозначение приставки русское международное 10^{18} 10^{15} П P пета 10^{12} T Т тера 10^{9} G гига 10^{6} мега M M 10^{3} k кило к 10^{2} гекто Γ h 10^{1} лека ла 10-1 d деци Л 10-2 санти С 10-3 милли M μ 10^{-6} микро МК 10-9 нано Н 10-12 пико 10-15 фемто ф 10^{-18} атто а а

Порядок выполнения работы.

- 1. Выполнить задание 1. По приложениям 1 3 назвать предложенные физические величины по обозначению их размерности и указать их единицы измерения и размер. Результаты оформить в табл. 1.2.
- 2. Выполнить задание 2. По приложениям 1 3 определить наименование производных величин и единиц их измерения. Результаты оформить в табл. 1.3.

Таблица 1.2 Результаты измерений

	,							
$N_{\underline{0}}$	Дано	Наименова-	Единица измерения		Количество			
п/п		ние величины	Наиме-	Обозначе-	единиц			
			нование	ния				
1	T=40 c							
2	Q=25 K							
3	L=300 м							
4	I=3 A							
5	N=45 моль							

3. Выполнить задание 3. Получить задание у преподавателя и перевести заданные единицы в требуемые. Результаты записать в табл. 1.4.

Таблица. 1.3

Результаты измерений

$N_{\underline{0}}$	Дано	Наименова-	Размерность	Единица измерения	
Π/Π		ние		наименование	обозначение
		величины			
1	60 BT				
2	20 Ф				
3	18 Ом				
4	125 Кл				
5	10 Дж				

Таблица 1.4

Результаты измерений

Задано	Перевести в единицы		

4. Сделать вывод о проделанной работе.

Контрольные вопросы

- 1. Какая метрическая система единиц измерения используется в настоящее время в большинстве стран мира?
- 2. Укажите достоинства используемой в РФ метрической систтемы единиц физических величин.
 - 3. Что такое единица физической величины?
 - 4. Перечислите основные единицы системы СИ.
 - 5. Назовите производные единицы системыСИ.
- 6. Какой способ образования кратных и дольных единиц принят в используемой в РФ метрической системы единиц?
- 7. Наименование каких единиц пишется с большой буквы, а каких с маленькой?
 - 8. Какую степень имеют кратные единицы, а какую дольные?
 - 9. Что такое система физических величин?
- 10. Назовите три вида физических величин, измерение которых осуществляется по различным правилам.